在深度学习变得普遍之前的2010年,感知是molex连接器自动驾驶汽车能力的主要限制,但2014年之后基于深度学习的雷达技术、相机还有激光雷达,带来了技术性能的不断提升——那么无人驾驶汽车下一步还会迎来哪些挑战呢? 在过去的十年里,自动驾驶领域对机器学习的大部分对话都集中在对象检测上。对安全导航至关重要的是,我们如何才能提高自动驾驶汽车检测和跟踪动态物体的能力?在2010年,当深度学习变得普遍之前,感知是自动驾驶汽车能力的主要限制。其中ImageNet的分类精度在当时作为最先进的解决方案只能达到50%的准确率(相比之下,今天的准确率为88%)。虽然ImageNet分类并不能与当前最先进的目标检测技术相提并论,但它确实代表了计算机视觉的进步。 直到2012年,AlexNet成为ImageNet竞赛的首批参赛者之一,它利用卷积神经网络进行深度学习。AlexNet在当年的ImageNet竞赛上达到了最先进的精度,成为计算机视觉领域最有影响力的方法。 从2014年开始,基于深度学习(Deep Learning)的雷达技术、相机还有激光雷达,都开始悄悄进入自动驾驶领域。谷歌的自动驾驶汽车与一位坐轮椅的女士用扫帚追赶一只鸭子的奇遇,成为有史以来挑战感知技术的一个著名例子。 如今,基于深度学习的感知技术在自动...